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We show using numerical simulations that vortices in honeycomb pinning arrays can exhibit a remarkable
variety of dynamical phases that are distinct from those found for triangular and square pinning arrays. In the
honeycomb arrays, it is possible for the interstitial vortices to form dimer or higher n-mer states which have an
additional orientational degree of freedom that can lead to the formation of vortex molecular crystals. For
filling fractions where dimer states appear, a dynamical symmetry breaking can occur when the dimers flow in
one of two possible alignment directions. This leads to transport in the direction transverse to the applied drive.
We show that dimerization produces distinct types of moving phases which depend on the direction of the
driving force with respect to the pinning lattice symmetry. When the dimers are driven along certain directions,
a reorientation of the dimers can produce a jamming phenomenon which results in a strong enhancement in the

critical depinning force. The jamming can also cause unusual effects such as an increase in the critical
depinning force when the size of the pinning sites is reduced.

DOI: 10.1103/PhysRevB.78.224511

I. INTRODUCTION

Vortex matter in type-II superconductors has been exten-
sively studied as a unique system of many interacting par-
ticles in which nonequilibrium phase transitions can be ac-
cessed readily.!” In the absence of driving or quenched
disorder, the vortex-vortex interactions favor a triangular
crystalline ordering. If the sample contains sufficiently
strong quenched disorder in the form of randomly placed
pinning sites, the vortex lattice ordering can be lost as the
vortices adjust their positions to accommodate to the pinning
landscape.'™* Under an applied drive such as the Lorentz
force from a current, the vortices remain immobile or pinned
for low driving forces; however, there is a threshold applied
force above which the vortices begin to move over the
quenched disorder. For strong disorder, the initial moving
state is highly inhomogeneous with the vortices flowing in
meandering and fluctuating channels, and there is a coexist-
ence between pinned vortices and flowing vortices.>? At
higher drives the vortices move more rapidly, the effective-
ness of the quenched disorder is reduced, and the fluctuations
experienced by the vortices become anisotropic due to the
directionality of the external drive.’ The vortex-vortex inter-
actions become more important at the higher drives when the
quenched disorder becomes ineffective, and a dynamical
transition can occur into a moving smectic state where the
vortices regain partial order in one direction.®® Here, the
system has crystalline order in the direction transverse to the
vortex motion and liquidlike order in the direction of vortex
motion. Depending on the dimensionality and the strength of
the pinning, it is also possible for the vortices to reorganize
in both directions at high drives to form a moving aniso-
tropic crystal.>"!% The existence of these different phases and
transitions between the phases can be inferred from signa-
tures in transport* and noise fluctuations,''? and the moving
phases have also been imaged directly using various
techniques.®?

In addition to the naturally occurring randomly placed
pinning sites, it is also possible for artificial pinning sites to
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be created in a periodic structure.'? Recent advances in nano-
structuring permit the creation of a wide variety of periodic
pinning landscapes where the periodicity, shape, size, and
density of the pinning sites can be well controlled. Distinct
types of pinning arrays such as square,'*?! triangular,?>%3
rectangular,?+?> honeycomb,627 kagomé,?®
quasicrystalline,”® and partially ordered® structures have
been created. In these arrays the type of vortex structure that
forms is determined by whether the vortex lattice is com-
mensurate with the underlying pinning array. Commensurate
arrangements appear at integer multiples of the matching
field By, which is the magnetic field at which the vortex
density matches the pinning density, and in general, ordered
vortex states occur at matching or rational fractional values
of B/B4.'471%3933 In samples where only one vortex can be
captured by each pinning site, the vortices that appear above
the first matching field sit in the interstitial regions between
the pinning sites, and these interstitial vortices can adopt a
variety of crystalline configurations,!3-18.2025.30,31,33

Since a number of distinct ordered and partially ordered
vortex states can be created in periodic pinning arrays, a
much richer variety of dynamical vortex behaviors occur for
periodic pinning than for random pinning arrays,!6-1834-50
Several of the dynamical phases occur due to the existence of
highly mobile interstitial vortices which channel between the
pinned vortices.!6-18:36-38:4041,43.4446.50 Ag 3 function of ap-
plied drive, various types of moving phases occur, including
interstitial vortices moving coherently between the pinning
sites in one-dimensional paths!®18:34-37:4044 o periodically
modulated winding paths,3*343:46 disordered regimes where
the vortex motion is liquidlike,3*3%404 and regimes where
vortices flow along the pinning rows.3*3%47-4% Other dynami-
cal effects, such as rectification of mixtures of pinned and
interstitial vortices, can be realized when the periodic pin-
ning arrays are asymmetric.’°

Most of the studies of vortex ordering and dynamics in
periodic pinning arrays have been performed for square and
triangular arrays. Experiments with honeycomb and kagomé
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FIG. 1. (Color online) (a) Pinning site locations (open circles)
for a triangular pinning array. (b) Pinning site locations for a hon-
eycomb pinning array constructed from the triangular array in (a)
by removing 1/3 of the pinning sites. (¢) The pinning site locations
and vortex positions (dots) for a honeycomb pinning array at
B/B4=1.5. The overall vortex lattice order is triangular. (d) The
pinning site locations and vortex positions for a honeycomb pinning
array at B/B=2.0, where two vortices are captured at the large
interstitial sites and the resulting dimers all have the same orienta-
tion. Here Fp=0.85, Rp=0.35\, and for the honeycomb array np
=0.3125/\2

pinning arrays revealed interesting anomalies in the critical
current at nonmatching fields which are as pronounced as the
anomalies observed at matching fields in triangular pinning
arrays.’®?” A honeycomb pinning array is constructed by re-
moving every third pinning site from a triangular pinning
array, producing a periodic arrangement of triangular inter-
stitial sites. In Figs. 1(a) and 1(b) we illustrate a triangular
pinning array along with the honeycomb pinning array that
results after the removal of one third of the pinning sites. The
matching anomalies in the experiments coincide with fields
B/By=m/ 2, with m an integer. At these fields, the vortex
density would match with the regular triangular pinning ar-
ray. At the matching anomalies for m>2, a portion of the
vortices are located in the large interstitial regions of the
honeycomb lattice,”’ as illustrated in Fig. 1(c) for B/B,
=1.5. The overall vortex lattice structure is triangular and a
strong peak in the depinning force occurs at this field.>!
Recently, we used numerical simulations to demonstrate
that vortices in honeycomb pinning arrays have a rich equi-
librium phase diagram as a function of vortex density,’! with
matching anomalies at integer and half-integer matching
fields that are in agreement with experiments. The large in-
terstitial sites created by the missing pinning sites can cap-
ture multiple interstitial vortices which form cluster states of
n vortices. For I.SSB/B¢<2.5, dimer states with n=2
form, while for higher fields trimer and higher-order n-mer
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states form. At the integer and half-integer matching fields,
the n-mer states can assume a global orientational ordering
which may be of ferromagnetic or antiferromagnetic type;
herringbone structures can also form, similar to those ob-
served for colloidal particles on periodic substrates’>>° and
molecules on atomic substrates.’’ These orientationally or-
dered states have been termed vortex molecular crystals.
Certain vortex molecular crystals have ground states that are
doubly or triply degenerate, such as the dimer state illus-
trated in Fig. 1(d) at B/B4=2.0 where the dimers align in
one of three equivalent directions.’! As the temperature is
increased, the n-mers undergo a transition from an ordered
state to an orientationally disordered state in which the
n-mers rotate randomly but remain confined to the interstitial
pinning sites. The rotating states have been termed vortex
plastic crystals. At matching fields where vortex plastic crys-
tals form, the anomalies in the critical current disappear.®!
The predictions from the simulations are in general agree-
ment with the experimental observation of the loss of certain
higher-order matching anomalies at higher temperatures.?’
The formation of n-mers that can be aligned along degener-
ate symmetry directions has also been predicted for kagomé
pinning arrays where every other pinning site is removed
from every other row of a triangular lattice.>'-8

The formation of dimer states in the honeycomb pinning
array leads to a variety of novel dynamical phases, including
a spontaneous dynamical symmetry-breaking effect in which
the moving vortices organize into one of two equivalent
states which have a component of translation perpendicular
to the applied drive in either the positive or negative
direction.” The transverse response appears when the exter-
nal driving force is applied halfway between the two sym-
metric directions of aligned dimer motion. The dynamical
symmetry breaking occurs when the equilibrium ground
states have no global symmetry breaking. At B/B,=2.0, the
ground state is symmetry broken and the dynamical moving
state has the same broken symmetry as the ground state. For
incommensurate fillings, when the dimer alignment is dis-
rupted, there is no global symmetry breaking in the ground
state, and instead a dynamical symmetry breaking occurs due
to the applied drive.

In this work we map the dynamical phase diagram for
vortices in honeycomb arrays. We focus on the states 1.5
<B/B4<2.5 to understand where dynamical symmetry
breaking occurs and to examine what other types of moving
phases are possible. We study how the dynamical phases
change for driving along different axes of the pinning lattice.
We find that very different types of dynamics occur when the
driving direction is varied and that the value of the depinning
threshold is strongly directionally dependent. We also find
that a jamming phenomenon can occur due to the formation
of the dimer states. For certain directions of drive, the dimers
are antialigned with the drive causing the dimers to become
blocked in the interstitial regions.

Although our results are specifically for vortices in type-1I
superconductors, the general features of this work should
also be relevant for other interacting particle systems where a
periodic substrate is present. Examples of such systems in-
clude vortices on periodic substrates in Bose-Einstein con-
densates (BECs) where different types of crystalline phases
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can occur depending on the strength of the substrate 06! It

should be possible to observe different types of vortex flow
states in BEC systems.®?> Our results are also relevant for
colloids on periodic substrates, where an orientational order-
ing of colloidal molecular crystals occurs which is very simi-
lar to that of the vortex molecular crystal states.”>5%%3 Other
related systems include charged balls on periodic substrates®*
and models of sliding friction.5

II. SIMULATION

We use the same simulation model employed in the pre-
vious study of vortex equilibrium states in honeycomb pin-
ning arrays.’! We consider a two-dimensional system of size
L,=L and L,=L with periodic boundary conditions in the x
and y directions. The sample contains N, vortices, giving a
vortex density of n,=N,/L? which is proportional to the ex-
ternal magnetic field. In addition, there are Np pinning sites
placed in a honeycomb arrangement with a pinning density
of np=Np/L>. The field at which the number of vortices
equals the number of pinning sites is defined to be the match-
ing field B,

The dynamics of vortex i located at position R; is gov-
erned by the following overdamped equation of motion:

n%:Ff"+F}’P+FD+FiT. (1)
Here the damping constant is 7= d)éd/ 2wEpy, where d is the
thickness of the superconducting sample, ¢ is the supercon-
ducting coherence length, py is the normal-state resistivity of
the material, and ¢y=h/2e is the elementary flux quantum.
The vortex-vortex interaction force is

NU
F?U=EfOK1<%)Rija (2)
J#i
where K, is the modified Bessel function, A\ is the London
penetration depth, fo= 5/ (2muo\>), R;;=|R;~R}| is the dis-
tance between vortex i and vortex j, and the unit vector li,»j
=(R;~R})/R;;. In this work all length scales are measured in
units of A and forces in units of f;,. The vortex-vortex inter-
action decreases sufficiently rapidly at large distances that a
long-range cutoff is placed on the interaction force at R;;
=06\ to permit more efficient computation times. The cutoff
creates a small discontinuity in the vortex-vortex interaction
force which ideally could be lessened by the addition of a
function that goes to zero smoothly; however, since the
Bessel function falls off very rapidly, the discontinuity is
very small at 6\. In past studies we have found that longer-
range cutoffs produce only negligible differences and that an
interaction range of 6\ is adequate.3%313431 Other studies
with logarithmically interacting vortices and no interaction
range cutoff produced a similar set of commensurate states
and dynamical vortex states in periodic pinning arrays as
those obtained for the Bessel function interaction with a
cutoff,>37 giving us reason to believe that our interaction
range cutoff does not affect our overall results.

The pinning force F;’P originates from individual nonover-
lapping attractive parabolic traps of radius Rp which have a
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maximum strength of Fp. In this work we consider the limit
where only one vortex can be captured per pinning site, with
the majority of the results obtained for Rp=0.35\. The exact
form of the pinning force is

Np (P)
F Ry —R: ~
S L I L TS
=1 \Rp A

Here, R”=|R,—RY)|, R is the location of pinning site k,
the unit vector li,(-,l:)z(Ri—R,(cP))/ RE,I:), and O is the Heaviside
step function.

The external drive Fp=F DfOﬁD represents the Lorentz
force from an applied current J X B which is perpendicular to
the driving force and is applied uniformly to all the vortices.
We apply the drive at various angles to the symmetry axes of
the honeycomb pinning array. The thermal force FIT origi-
nates from Langevin kicks with the properties (FiT)=0 and
<F,-T(t)FjT(t’)>=2nkBTﬁijﬁ(t—t’). Unless otherwise noted, the
thermal force is set to zero. The initial vortex configurations
are obtained by simulated annealing, and the external force is
then applied gradually in increments of AF,=0.0002 every
1000 simulation time steps. For the range of pinning forces
used in this work, we find that this force ramp rate is suffi-
ciently slow that transients in the vortex dynamics do not
affect the overall velocity-force curves. We obtain the
velocity-force curves by summing the velocities in the x
(longitudinal) direction, (V,)=N, IEﬁUIVi-)Z, and the y (trans-
verse) direction, (VQ:N;IE%V;)?, where v;=dR;/dt. In
Figs. 1(c) and 1(d) we illustrate the pinning sites and vortex
configurations after simulated annealing for B/B,=1.5 [Fig.
1(c)] and 2.0 [Fig. 1(d)]. Here L,=L,=24\ and np
=0.3125/\%. In our previous work (Ref. 59) the drive was
applied along the x direction for the geometry in Fig. 1.

III. DYNAMICS AND TRANSVERSE RESPONSE FOR
DRIVING IN THE LONGITUDINAL DIRECTION

We first consider the case for driving in the x or longitu-
dinal direction, F=FpX, for the system shown in Fig. 1(d)
with B/B4=2.0, Rp=0.35\, and Fp=0.85. In Figs. 2(a) and
2(b) we plot (V,) and (V,) versus Fy,. At this filling there are
four distinct dynamical phases, with the pinned (P) phase
occurring at low Fp,. The depinning threshold F. occurs near
Fp=0.14 when the interstitial vortices become depinned. For
a system with random pinning and F=FpX, there would be
no transverse velocity response; the system would have
(Vy»=0 and only (V,) would be finite. In contrast, for the
honeycomb pinning array there is a finite velocity both in the
positive x direction and in either the +y or —y direction. In
Fig. 2(b) the transverse response (V,) is negative, indicating
that the vortices are moving at a negative angle to the x axis
for 0.14 < F;,<0.37. Figure 3(a) illustrates the vortex motion
at Fp=0.25 where the vortices flow in one-dimensional paths
oriented at —30° to the x axis. In Fig. 3(b) a snapshot of the
vortex positions shows that the vortex lattice remains or-
dered in the moving phase, indicating that the vortices are
flowing in a coherent manner. We term the phase shown in
Fig. 3(a) the symmetry broken (SB) phase since the flow can
be tilted in either the positive or negative y direction.
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FIG. 2. (a) The average velocity in the x direction (V,) vs ex-
ternal driving force Fj for the honeycomb pinning array from Fig.
1(d) at B/B4=2.0 with Fp=FpX. (b) The corresponding average
velocity in the y direction (V,) vs F,. We observe four phases: the
initial P phase, a SB phase, aR phase, and a ML phase.

At B/B¢,=2.0 and F=0, the interstitial vortices form an
aligned dimer configuration with a threefold degenerate
ground state in which the dimers can be oriented along the y
direction, as in Fig. 1(d), or along +30° or —30° to the x
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FIG. 3. (Color online) The dynamics of the three moving phases
from Fig. 2 for the honeycomb pinning array at B/B,=2.0 with
F;,=FpX. The vortex positions (filled circles), pinning site locations
(open circles), and vortex trajectories (black lines) are shown in an
18\ X 18\ portion of the sample. (a) In the SB phase at F=0.25,
the interstitial vortices move along a —30° angle to the x axis, while
the vortices at the pinning sites remain immobile. (b) Vortex posi-
tions only in the SB phase at F=0.25 showing the ordering present
in the vortex lattice structure. (c) In the R phase at F,=0.42, the
vortex motion is highly disordered with vortices pinning and repin-
ning at random. (d) Vortex positions only in the R phase at Fp
=0.42 indicate that the vortex lattice is disordered. (¢) In the ML
phase at F,=0.65, all the vortices channel along the pinning sites.
(f) Vortex positions only in the ML phase at Fp,=0.65 reveal an
anisotropic vortex lattice structure with different numbers of vorti-
ces in each row.
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FIG. 4. (Color online) Time traces of vortex velocity at fixed
Fp. Upper curves: V,(1); lower curves: V(7). (a) The SB phase at
Fp=0.25 from Figs. 3(a) and 3(b). Here pronounced oscillations
occur in both V, and V, as the vortices move in a coherent fashion.
(b) The R phase at Fp=0.42 from Figs. 3(c) and 3(d). In this case
the transverse motion is lost and (Vy>=0. Additionally, there are no
correlated oscillations. (c) The ML phase at F,=0.65 from Figs.
3(e) and 3(f). V, has been shifted down for clarity. There is a weak
oscillation in V, due to the periodic substrate. Since the flow is
strictly one-dimensional, as shown in Fig. 3(e), there are no fluc-
tuations in V.

direction, as shown in previous work.”® When a driving force
is applied to the +30° or —30° ground states, the vortices
depin and flow along +30° or —30°, respectively. In these
cases, the symmetry breaking in the moving state is not dy-
namical in nature but reflects the symmetry breaking within
the ground state. If the dimers are initially aligned along the
y direction in the ground state, an applied drive induces an
instability in the pinned phase and causes the dimers to rotate
into the +30° or —30° direction, as we discuss in further
detail below. In this case the symmetry breaking is dynami-
cal in origin.

In Figs. 2(a) and 2(b) we find pronounced oscillations in
both (V,) and (V,) just above the depinning threshold F,
=0.14. These oscillations are not intrinsic features but are
due to the fact that at B/B,=2.0 the interstitial vortex lattice
is perfectly ordered so the interstitial vortices move in a co-
herent fashion as shown in Fig. 3(a). At depinning, the inter-
stitial vortices are slowly moving through a periodic poten-
tial created by vortices that remain trapped at the pinning
sites. This periodic potential causes the moving interstitial
vortices to develop an oscillating velocity. In Fig. 4(a), the
instantaneous time traces of the vortex velocity V, and V, at
constant Fp=0.25 show strong velocity oscillations. At in-
commensurate fields, there is enough dispersion in the veloc-
ity of the moving interstitial vortices that the coherent veloc-
ity oscillations are no longer distinguishable.

As Fp increases, the net vortex velocity in the SB phase
increases linearly until F,=0.365, where there is an abrupt

224511-4



MOVING VORTEX PHASES, DYNAMICAL SYMMETRY ...

increase in (V). Figures 2(a) and 2(b) show that this increase
coincides with a jump in (V,) to a zero average, indicating
that the vortices are moving only in the x direction on aver-
age. In Fig. 3(c) we illustrate the disordered vortex trajecto-
ries that occur in this phase at F,=0.42. The vortices are
continually depinning and being repinned, and the order in
the vortex lattice is lost, as shown in Fig. 3(d). We term this
the random (R) phase. It resembles random dynamical
phases that have previously been observed for vortices in
square pinning arrays when the interstitial vortices begin to
depin vortices from the pinning sites.>* Figure 2 shows that
there are pronounced random fluctuations in (V) and (V) in
phase R and also that (V,) does not increase linearly with F,
but has a curvature consistent with V,=(Fp—FX)!2, where
FR=0.365 is the threshold value for the SB-R transition. In
the SB phase, the number of moving vortices is constant and
is equal to the number of interstitial vortices, while in the R
phase the number of moving vortices increases with Fp,.

At Fp=0.53, the system organizes into a one-dimensional
flowing state where the vortex motion is locked along the
pinning rows, as shown in Figs. 3(e) and 3(f) for F;,=0.65.
The onset of this phase also coincides with the decrease of
fluctuations in (V,) and the loss of fluctuations in V,, as
shown in Fig. 4(c). For F;,>0.53, all of the vortices are
mobile and Fig. 2(a) illustrates that the (V,) versus F), curve
becomes linear again. We term this the moving locked (ML)
phase since the vortex motion is effectively locked along the
pinning sites. When the vortices are rapidly moving, the pin-
ning sites have the same effect as a flashing one-dimensional
trough that channels the vortices.’*3° The vortices assume a
smectic structure in the ML phase since different rows have
different numbers of vortices, resulting in the formation of
aligned dislocations. The ML phase is essentially the same
state found in square pinning arrays at high drives when
B/By>1.03*

In previous studies of square pinning arrays with strong
pinning, the initial motion of the vortices for B/B ;> 1.0 oc-
curred in the form of one-dimensional channels between the
vortices trapped at the pinning sites.>* In the honeycomb
pinning array, similar flow occurs in the SB phase as shown
in Fig. 3(a). For B/B,<1.5 in the honeycomb array, the
initial interstitial flow for depinning in the x direction occurs
via the flow of individual vortices in a zigzag pattern around
the pinned vortices. Since there is no dimer ordering for
these fillings, no transverse response occurs for B/B,<1.5.
For B/B4=1.5, the interstitial vortices begin to form dimer
states when two interstitial vortices are captured in a single
large interstitial site. The dimers can lower their orientational
energy by aligning with each other in both the ground state
and the moving states. Dimers can only remain aligned in the
moving state if they are channeling along one of the symme-
try axes of the pinning lattice. If the dimers were to move
strictly in the x direction, they would be forced directly into
the pinned vortex in the pinning site to the right of each large
interstitial site. This would destabilize the rodlike dimers.
Instead, the dimers maintain their integrity by moving along
*30° to the x axis. Within the moving state, if one of the
dimers were to move along +30° while the remaining dimers
were moving along —30°, the two interstitial vortices com-
prising the first dimer would be forced close together, desta-
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bilizing the dimer state due to the repulsive vortex-vortex
interactions. Instead, all of the dimers move in the same di-
rection.

The SB-R transition occurs when the combined forces on
the pinned vortices from the external drive and the moving
dimers are strong enough to depin the pinned vortices. At the
closest approach in the x direction between a dimer and a
pinned vortex, the frontmost dimer vortex is a distance aqy/2
from the pinned vortex and the rear dimer vortex is a dis-
tance 3a, from the pinned vortex, where a, is the lattice
constant of the undiluted triangular pinning lattice. In addi-
tion to the force from the dimerized vortices, the pinned
vortex experiences an opposing force from the neighboring
pinned vortex a distance a, away. In a simple approximation,
the driving force needed to depin a vortex at a pinning site is
thus FD=FP—{[K1(610/2) +K1(3a0/2)]—K1(a0)}. Settlng Fp
=0.85 gives Fp=0.41, close to the value of F;,=0.37 for the
SB-R transition in Fig. 2. Once the pinned vortices depin, the
system enters the R phase, and since F/, is still considerably
less than Fp, it is possible for vortices to be pinned tempo-
rarily in phase R.

Studies of square pinning arrays have shown that after the
onset of a random dynamical phase, the vortices can organize
into a more ordered phase of solitonlike pulse motion along
the pinning rows, followed by a phase in which all of the
vortices channel along the pinning rows.3* At the transition
to the one-dimensional pulselike motion, a larger fraction of
the vortices are pinned compared to the random phase so a
drop in (V,) with increasing F, occurs, giving a negative
differential conductivity. In the honeycomb pinning arrays
for the parameters we have chosen here, we do not observe
one-dimensional pulse motion or negative differential con-
ductivity for driving along the x direction. For the one-
dimensional pulse motion or the ML phase motion shown in
Figs. 3(e) and 3(f) to occur, the vortices must be moving at a
sufficiently high velocity for the pinning sites to act like a
flashing trough. When the vortices move along the pinning
rows, the vortex lattice structure adopts a highly anisotropic
configuration which would be unstable at F,=0. During the
period of time when a vortex passes through a pinning site,
the vortex is pulled toward the center of the pinning row,
which stabilizes the one-dimensional motion. When the vor-
tex is moving between the pinning sites, it can drift away
from the one-dimensional path until it encounters another
pinning site. In Ref. 34, it was shown that for square pinning
arrays, increasing the pinning radius Rp stabilized the one-
dimensional flow down to lower values of Fj. In the honey-
comb pinning array, the one-dimensional flow is less stable
due to the fact that the vortices must move over a much
wider large interstitial site giving the vortices more time to
drift away from the pinning row. Since this means that a
larger value of Fp is required to stabilize the one-
dimensional motion, it should be more difficult in general to
observe the onset of one-dimensional solitonlike motion or
negative differential conductivity in the honeycomb pinning
arrays than in the square pinning arrays.

A. Finite-size effects

We next consider the effect of the system size on the SB
phase since it might be expected that the SB phase could be
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FIG. 5. (Color online) The absolute value of the transverse ve-
locity |V,| versus time for systems with Fp=0.85, Rp=0.35\, np
=0.3125/\?, and B/B4=1.81. At time t=0 a longitudinal drive of
Fp=0.3 is suddenly applied. From left to right, the system sizes are
L=24\, 36\, and 60A\.

more readily stabilized in a small system. We perform simu-
lations with the same parameters as in Fig. 2 but for larger
systems with L=36\ and 60\. For all system sizes at B/B,,
=2.0 and for sufficiently long annealing times, we find a
state similar to that shown in Fig. 1(d) where all the dimers
align in one of the three directions. Once the system is in a
broken symmetry ground state, it depins directly into a SB
state and moves along a +30° or —30° angle to the x axis. For
fillings very close to B/B4=2.0, the global symmetry of the
ground state is preserved and the system still depins directly
into one of the +30° or —30° moving configurations. For
fillings further away from commensuration, the dimer state
becomes disordered and the dimers move simultaneously
along both the +30° and —30° directions giving an initial
transverse velocity of |V,|=0. Over time, the system dy-
namically organizes into either the +30° or —30° moving
state. To illustrate this, we consider a system with B/By
=1.81 and abruptly increase the driving force from Fp=0 to
0.3, a value at which the moving SB phase should be stable.
This procedure is similar to the one we used in previous
work where we found that the initial transverse velocity of
|V,| =0 asymptotically approached either a positive or nega-
tive finite value over time.”® In Fig. 5 we plot |V,| versus
time after the sudden application of a drive F;,=0.3 at =0
for samples of sizes L=24\A, 36\, and 60N with B/B,
=1.81. The system always organizes into a SB state with
finite (Vy); however, the time required to reach the SB state
increases with increasing system size L. In Figs. 6(a)-6(c)
we illustrate the evolution of the vortex trajectories into the
SB state for the L=24\ sample at B/B,=1.81. Vortices ini-
tially move in both the +30° and —30° directions, as shown
in Fig. 6(a), but gradually a larger fraction of the vortices
move in the +30° direction, as shown in Fig. 6(b), until fi-
nally all of the vortices organize into the +30° direction and
form the moving SB state shown in Fig. 6(c). In Fig. 6(d) we
show the SB state for L=60\ at B/ B 4=2.0 where the system
passes immediately from the pinned ordered ground state
into the moving SB state without any transient period. The
increasing time required for the system to reach the SB state
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FIG. 6. (Color online) The vortex positions (filled circles), pin-
ning site locations (open circles), and vortex trajectories (black
lines). [(a)—(c)] The evolution of the vortex trajectories into the SB
phase after application of a drive F=0.3 for the system in Fig. 5 at
B/By=1.81 with L=24\. (a) The initial motion of the system at ¢
=3000 simulation time steps where the net transverse velocity (V,)
is near zero. (b) The partial organization of the SB phase at ¢
=40 000 simulation time steps. (c) The complete organization of the
SB phase for t=160 000 simulation time steps. At later times the
system remains in the state illustrated in panel (c). (d) The vortex
trajectories in the SB state for the L=60\ system at B/B ,=2.0.

for increasing system sizes at incommensurate fields implies
that in an infinite system, a true SB state may never be
reached at the incommensurate fields; however, since |Vy| is
generally increasing with time, the presence of the SB phase
could be deduced by measuring a time-dependent transverse
velocity response for a fixed longitudinal drive. We note that
the time dependence of the transverse velocity at the incom-
mensurate fields implies that new types of memory or coars-
ening effects could be studied with this system, which is
beyond the scope of this work. If we consider the system to
be similar to an Ising model, the sudden application of a
longitudinal drive would be equivalent to suddenly quench-
ing the Ising system into a zero magnetic-field state. The
system will coarsen over time into a positive or negative
magnetic-field state, and this process will take longer for
larger systems.

The n-merization effect for interstitial vortices in honey-
comb pinning arrays®' is very similar to the colloidal mo-
lecular crystal states studied for colloids on periodic
substrates.”>>% In both cases it is possible to have a ferro-
magneticlike coupling between the dimers or n-mers. Theo-
retical work on the colloidal molecular crystals indicates that
many of the states of these systems can be mapped to the
Ising or n-state Potts models,>*3¢ which are known to have
ordered ground states. If the dimerized interstitial vortices
also fall into this class of systems, we would expect the
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ground state at B/B4=2.0 to have a global ordering that is
independent of the system size. For the static vortex system,
there are three possible ordered ground states rather than
two, but in the presence of an applied drive there are only
two ordered moving states. Although the driven state is non-
equilibrium, it could still be considered as a dynamical type
of Ising model with two global dynamical low-energy states
that are independent of the system size. As indicated earlier,
if the dimers are moving in two different directions at the
same time, they must approach each other much more
closely, which is energetically unfavorable. We note that in
our previous work, we showed that the moving SB states are
highly stable and that once the system locks into a moving
SB state, an appreciable external force must be applied to
switch the system out of the state.>

Any real superconducting system is likely to contain some
random disorder, which could interfere with the formation of
the SB state. We have shown, however, that the system can
still organize into a SB state even for incommensurate fields,
which are intrinsically disordered. Therefore, we expect that
the SB state should still be accessible even in the presence of
random quenched disorder provided that the disorder is not
too strong. Since the SB states at B/By=2.0 are the most
strongly ordered, this is the best applied field to consider
when seeking to measure the transverse response in the SB
phase experimentally.

The symmetry breaking in the system considered here
arises due to particle-particle interactions between the vortex
dimers, while the underlying substrate is symmetric. In trans-
verse ratchet systems, where an applied ac or dc longitudinal
driving force produces an additional transverse response,
symmetry breaking is triggered by an asymmetric substrate,
and the particle-particle interactions are irrelevant.®6=% The
direction of the transverse motion in transverse ratchets is
determined by the direction of the substrate asymmetry. In
contrast, for vortex dimers in a honeycomb pinning array, the
transverse response can be in either direction depending on
how the symmetry breaks in the ground-state configuration
at B/B4=2.0 or upon the formation of the dynamical SB
state.

B. Fluctuations and noise characteristics

In order to characterize the moving phases more quanti-
tatively, in Fig. 4 we show time traces V() and V() of the
vortex velocities at fixed Fj, for the different phases for the
system in Fig. 2. In the SB phase at F,=0.25, shown in Fig.
4(a), V, is greater than |V,| by tan(30°) or about 1.7. Here
both components of the velocity show a pronounced oscilla-
tion which arises when the interstitial vortices move in a
coherent fashion over the periodic potential substrate created
by the immobile vortices in the pinning sites. In Fig. 7(a), we
plot the corresponding power spectrum S(v) of V, obtained
from

2

(4)

S(v) = ‘fo(t)e_z"i”’dt

There is a pronounced peak in S(v) at the frequency of the
velocity oscillation in the SB phase indicating that mode-
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FIG. 7. The power spectra S(v) of the x component of the ve-
locity V., (¢) for the three phases in Fig. 4. (a) The SB phase at Fp,
=0.25 shows a pronounced narrow-band noise signature. (b) The R
phase at F,=0.42 has a broad band noise signature. (c) In the ML
phase at Fp=0.65, a number of different frequencies are present
due to the fact that different rows of the vortices move at different
velocities.

locking effects could appear at B/By=2.0 when the
symmetry-breaking flow occurs. In square pinning arrays,
experiments'® and simulations®’ revealed Shapiro steplike
mode locking of interstitial moving vortices at B/B;,=2.0. In
the honeycomb lattice, since there is also a strong oscillation
in vy in the SB phase, we expect that transverse mode lock-
ing could occur if an additional ac drive is applied in the y
direction. Such mode locking would appear as steps in both
(V) and (V,) versus F, in the SB phase. Transverse phase
locking, which produces steps that are distinct from Shapiro
steps, has been observed for the motion of vortices in square
arrays.’® In general, if the vortices already have an intrinsic
velocity oscillation in the transverse direction, then pro-
nounced transverse phase locking is possible.

In Fig. 4(b) we plot the time trace of V, and V| for the R
phase at F,=0.42. In this case (V,)=0 and although both V,
and vy show fluctuations, no oscillations or washboard fre-
quencies appear. In Fig. 7(b) we show the corresponding
S(v) for V,, where we find a broad band noise feature con-
sistent with disordered plastic flow.*71? Since there are no
coherent velocity oscillations, mode locking should be ab-
sent in the R phase.

In Fig. 4(c) we plot V, and V| in the ML phase at F),
=0.65, where V, has been shifted down by a factor of 3 for
clarity. There are no visible fluctuations in V, due to the
one-dimensional nature of the flow, but there are small peri-
odic oscillations in V, generated by the motion of the vorti-
ces over the periodic substrate. Due to the fact that different
one-dimensional rows contain different numbers of vortices,
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FIG. 8. (Color online) Vortex positions (filled circles), pinning
site locations (open circles), and trajectories (black lines) for a sys-
tem with B/B;=2.0 and Fp=0.85 which started in the y-aligned
ground state. (a) The pinned phase at F,=0.09. Here the dimers and
the vortices in the pinning sites have all shifted slightly to the right
compared to the ground state due to the applied drive. (b) A rota-
tional instability occurs at Fp~0.11 when the vortices move in a
manner that allows the dimers to align along —30° to the x axis.
There is also a small shift of the vortices in the pinning sites. (c)
The pinned state at F=0.12 where the dimers are aligned in the
new —30° direction.

producing dispersion in the vortex velocities, the oscillation
in V, is not as pronounced as in the SB phase. The corre-
sponding power spectrum in Fig. 7(c) contains a rich variety
of peaks due to the wide range of frequencies present in this
phase. The main peak is smaller in magnitude than that
found for the SB phase. As F, increases, the frequency at
which the first peak occurs also increases. It should be pos-
sible to generate phase locking in the ML phase; however, it
would likely not be as pronounced as in the SB phase. These
results suggest that noise fluctuations can be a useful tech-
nique for exploring the presence of different dynamical
phases in periodic pinning arrays.

C. Dynamical symmetry breaking in the pinned phase

As previously noted, the ground state at B/B4=2.0 is
threefold degenerate. When the dimers are aligned at either
+30° or —30° to the x axis in the ground state, the subsequent
SB flow is aligned in the same direction as the ground state.
It is also possible for the dimers to align in the y direction, as
shown in Fig. 8(a). At F;,=0.09, the dimers and the vortices
in the pinning sites are shifted slightly to the right due to the
applied drive. As Fp is further increased, a symmetry-
breaking transition occurs within the pinned phase. For F),
<<0.11 the dimers remain aligned in the y direction; however,
at F,=0.11, the rotational instability illustrated in Fig. 8(b)
occurs. The dimers rotate in such a way that they end up
aligned in the —30° direction. The interstitial vortex at the
bottom of the dimer moves in the +x direction and by a
smaller amount in the +y direction, while the vortex at the
top of the dimer moves in the —y direction and by a smaller
amount in the —x direction. There is also a slight shift of the
vortices in the pinning sites that are closest to the bottom of
each dimer. In Fig. 8(c) the rotation process is completed and
the dimers are aligned in a new direction (—30°). The vorti-
ces remain pinned until F=0.14, at which point the system
enters the SB phase. At finite temperatures, the dimer re-
alignment occurs at even lower values of F,. The rearrange-
ment can also be observed as a jump in (V,) and (V) as
shown in Fig. 9, where there is a positive spike in (V,) and a
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FIG. 9. (Color online) The velocity (V,) (upper curve) and (V,)
(lower curve) vs Fp for the system in Fig. 8. The rotational insta-
bility seen in Fig. 8(b) appears as a positive peak in (V,) and a
negative peak in (V,) just above Fjp=0.11. The system remains
pinned until around F p=0.14.

negative spike in (V,) near F;,=0.11, in agreement with the
motion shown in Fig. 8(b). We term this a dimer polarization
effect since the driving force induces an alignment of the
dimers. In runs with slightly different initial conditions, the
dimers may align along the +30° direction with 50% prob-

ability.

D. Dynamics for 1.5=B/B ;,<2.5

We next consider the effect of changing the vortex density
for fillings where interstitial dimers are present and the SB
phase occurs. In Fig. 10(a) we illustrate the vortex positions
for B/B,=1.91 where a mixture of monomers and dimers
appear in the large interstitial sites. At this filling, the overall
orientational ordering of the dimers is lost in the ground
state, and the dimers are oriented only in local patches. For
B/B4>2.0, a mixture of interstitial dimers and trimers is
present, as shown in Fig. 10(b) for B/B;=2.08, and the ori-
entational ordering is again lost. In Ref. 59 it was shown that
the SB state still occurs at incommensurate fields as long as
some dimers are present. If Fp, is suddenly increased from
zero to a finite value at which only the interstitial vortices
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FIG. 10. (Color online) Vortex positions (filled circles) and pin-
ning site locations (open circles) for the system in Fig. 2 at (a)
B/By=191 and (b) B/By4=2.08. At these fillings, the long-range
orientational ordering of the dimer state is lost.
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FIG. 11. (V) versus F, for (a) B/B 4=1.89, (b) B/ B 4=1.94, and
(c) B/B=2.5 for a system with the same parameters as in Fig. 2. P:
pinned phase; SB: symmetry broken phase; R: random phase; and
ML: moving locked phase.

depin, the moving state for the incommensurate fields orga-
nizes into a dynamically symmetry broken state where all of
the dimers flow along +30° or —30°. At the incommensurate
fields, only the dimers undergo dynamical symmetry break-
ing; the monomers and trimers continue to move in the di-
rection of the drive, with some fluctuations in the transverse
direction.

In Fig. 11 we plot (V) for the system in Fig. 2 at B/B,,
=1.89, 1.94, and 2.5. In Figs. 11(a) and 11(b), the same four
phases described above are labeled. The SB phase has oppo-
site sign in Figs. 11(a) and 11(b); the dynamical symmetry
breaking can occur in either direction since there is no sym-
metry breaking in the ground state. If slightly different initial
conditions are used, such as by changing the initial annealing
procedure, the dynamical symmetry breaking has equal prob-
ability to occur in the positive or negative direction, as
shown previously.” In Figs. 11(a) and 11(b) the initial por-
tion of the SB phase has fluctuations in (V,) due to the fact
that we are increasing F'p, at a finite rate and there is a tran-
sient time for the moving state to fully organize into the SB
state, as studied previously.”® The transient time increases as
|B/B4—2.0| increases. If we decrease AF, the fluctuations at
depinning are reduced; however, the boundary between the
phases does not shift.

In Fig. 11(c) at B/By=2.5, (V,)=0 since there are only
trimer states present. The large oscillations in (V) occur
when the system forms a completely ordered trimer ground
state’! and the vortex motion is highly coherent, similar to
the effect shown in Fig. 2. For the rate at which we sample
and average (V) versus Fp, the periodic fluctuating vortex
velocity is visible. For F,> 0.5 the system enters a partially
moving locked phase where a portion of the vortices move
along the pinning rows. There are, however, too many vorti-
ces to form straight one-dimensional chains of the type
shown in Fig. 3(e) for B/B4=2.0. A buckling instability of
the chains occurs since the amount of anisotropy that would
occur if one-dimensional chains formed is too large for the
vortex lattice to sustain. Instead, a partially moving locked
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FIG. 12. The dynamic phase diagram for F, vs B/ B4 highlight-
ing the different dynamical phases. P: pinned; SB: symmetry bro-
ken; R: random; and ML: moving locked. Here Fp=0.85, Rp
=0.35X\, and np=0.3125/\2. For B/By>2.125, at high F), the sys-
tem forms a PML phase where not all of the vortices move along
the pinning rows.

(PML) phase forms with a disordered moving vortex lattice.
This result is interesting since it indicates that moving vortex
phases do not always organize into ordered states. A time
trace of a PML state at fixed F, shows much weaker velocity
oscillations than those shown in Fig. 4(c) for the ML state.
This suggests that phase locking with PML states will be
very weak or absent. In previous work on phase locking for
square arrays, it was shown that the phase locking is most
pronounced at commensurate fields where the moving vortex
structures are more ordered.'®3

By performing a series of simulations for varied B/B,,
measuring the features in the velocity force curves, and ob-
serving the vortex structures, we construct the dynamical
phase diagram of F, vs B/B, shown in Fig. 12. The depin-
ning force marking the end of the P phase shows peaks at
B/By=1.5, 2.0, and 2.5, corresponding to the commensurate
and ordered ground states reported previously.’! The SB-R
transition line is fairly flat as a function of B/B, with an
enhancement to higher values of Fj, occurring near B/B,,
=2.0, while at the incommensurate fields, monomers or tri-
mers create fluctuations that cause the vortices at the pinning
sites to depin at slightly lower values of Fp. For B/B,
< 2.1, upon increasing F, the random state organizes into a
ML state where all the vortices move along the pinning rows
as shown in Fig. 3(e), while for B/B4=2.1, the random state
organizes into the PML state. The width of the random
phase, as determined by the fluctuations in the velocity, in-
creases and persists to higher values of Fj, for increasing
B/By at B/By=2.1. For B/B¢<1.5 and B,>2.5, where
dimers are no longer present, the SB phase is lost and a new
set of dynamical phases arises which we discuss in more
detail below.

E. Effect of changing the pinning strength

We next consider the effect of changing the pinning
strength when B/ B 4=2.0. The four phases in Fig. 2 occurred

224511-9



C. REICHHARDT AND C. J. OLSON REICHHARDT

0.2 "/'\.‘/./"/o
015 w |
w® 0.1+ —
005~ /pp P PHB |
| | | |
0.5 1 1.5 2 2.5
F

FIG. 13. The critical depinning force F, vs Fp for a system with
B/B4=2.0, Rp=0.35\, and np=0.3125/\2. For Fp<0.45 a PP state
forms which is illustrated in Fig. 14(a). For 0.45=Fp<1.75 the
system forms the P orientationally ordered dimer state such as that
shown in Fig. 1(c). For Fp=1.75, the PHB state seen in Fig. 14(b)
forms.

in a sample with Fp=0.85. As Fp is varied, we find several
different kinds of ordering within the pinned phase that affect
the dynamics which occur at finite Fp. In Fig. 13 we plot the
threshold depinning force F, as a function of Fp. For Fp
<0.35 the pinning is weak enough that the vortex-vortex
interactions dominate over the pinning energy and a nearly
triangular vortex lattice forms, as shown in Fig. 14(a). In this
arrangement, half of the pinning sites are still occupied so
the vortex lattice is partially pinned (PP) and there is a finite
depinning threshold. This type of partially pinned vortex lat-
tice was observed in previous simulations on honeycomb
pinning lattices,’' and similar partially pinned vortex lattice
states have been predicted for square pinning arrays®® and
observed for metallic particles on periodic structures.®* The
depinning transition from the PP state is elastic, and all the
vortices depin simultaneously to form the moving triangular
crystal (MC) as shown in Fig. 15(a). In the MC, half of the
vortices move in one-dimensional paths along the pinning
rows, while the remaining vortices move through the inter-
stitial regions with a small transverse oscillation.
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FIG. 14. (Color online) Vortex positions (filled circles) and pin-
ning site locations (open circles) for the system in Fig. 13. (a) The
PP state at Fp=0.25. The vortex lattice structure consists of a trian-
gular lattice, and only half of the pinning sites are occupied. (b) The
PHB state at Fp=2.0. Here the dimers do not all align in the same
direction but instead alternate in their alignment from row to row.
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FIG. 15. (Color online) Vortex positions (filled circles), pinning
site locations (open circles), and vortex trajectories for the system
in Fig. 13. (a) MC state for Fp=0.25 and F;,=0.2. The PP state
from Fig. 14(a) depins elastically into a MC where half of the
vortices move directly along the pinning rows and the other half of
the vortices move in winding paths between the pinning sites. (b)
MI state for Fp=2.0 and F,=0.225. The PHB state depins into a MI
state in which interstitial vortices move around the pinned vortices.

Figure 13 shows that the P ordered dimer state forms for
0.45=Fp<1.75. Over the range 0.45= Fp<0.55, the depin-
ning from state P does not occur by the initial flow of the
interstitial vortices into the SB phase, unlike the case shown
earlier for Fp=0.85. Instead, for 0.45= Fp<<0.55, both the
interstitial vortices and the vortices at the pinning sites depin
simultaneously and rearrange into the MC state as shown in
Fig. 15(a). We also find a peak in F, at Fp=0.5. This peak
occurs due to both the change in the pinning configuration
and a change in the depinning process. For Fp<<0.45, only
half of the pinning sites are occupied and the vortex lattice
depins elastically. At 0.45= Fp<<0.55, all of the pinning sites
are now occupied in the P state, but the vortex lattice still
depins elastically. The pinning energy that must be overcome
to depin the lattice is increased compared to the PP state,
leading to an increase in F,.. For 0.55=Fp<<1.75, the depin-
ning process is plastic and only the interstitial vortices flow
at depinning to form the SB state. Since the plastic depinning
process does not require pinned vortices to depin, the thresh-
old force F, drops, producing the peak in F, at Fp=0.5.

For Fp=0.7 in Fig. 13, the depinning threshold F. slowly
increases with increasing Fp, and a transition in the pinned
vortex structure occurs at Fp=1.75. For Fp=1.75, the dimers
in the pinned state are no longer aligned but form a pinned
herringbone (PHB)-type structure such as that shown in Fig.
14(b) where the dimers are tilted in the same direction in one
row and tilted in the opposite direction in the adjacent rows.
Herringbone ordering of dimers has previously been ob-
served for colloidal dimers on triangular lattices’* and for
vortices in kagomé arrays at 5/3 filling.’! At depinning, the
PHB state does not form a SB phase but instead forms the
winding interstitial phase shown in Fig. 15(b). The dimers
break apart into two monomers, with one monomer passing
around the pinned vortices in the positive y direction and the
other monomer passing the pinned vortices in the negative y
direction. We term this state the moving interstitial (MI)
phase.

In contrast to the herringbone state, the aligned dimer or
ferromagnetic ordering of the P state occurs when the pinned
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FIG. 16. (V,) vs Fp for B/B4;=2.0, Rp=0.35\, and np
=0.3125/\2. (a) At Fp=0.25, there is an elastic depinning transition
between the PP state and the MC state. (b) At Fp=1.125 the four
dynamical phases are present. P: pinned; SB: symmetry broken; R:
random; and ML: moving locked. (c) At Fp=2.125 the PHB state
depins into the MI state illustrated in Fig. 15(b). The transition
between the MI and the ML state is much sharper than the R to ML
transition shown in (b).

vortices adjacent to the dimers are able to undergo a periodic
distortion within the pinning sites, reducing the interaction
energy between the pinned and interstitial dimer vortices and
permitting the dimer alignment. If the dimers are aligned
along +30°, as shown in Fig. 5(a) of Ref. 51, the two pinned
vortices closest to each interstitial vortex in the dimer both
splay outwards away from the +30° direction. When Fp is
increased, the pinned vortices are pulled toward the center of
each pinning site and are no longer able to distort in order to
accommodate the aligned dimer state so the PHB state forms
instead. This result suggests that there may be other types of
ground-state ordering for vortices in honeycomb and kagomé
arrays in addition to those that have been reported previ-
ously. It may be possible to use the size and shape of the
pinning sites as a means of controlling the type of crystalline
structure that forms.

In Fig. 16, we plot (V,) versus F, for Fp=0.25, 1.125,
and 2.125. Figure 16(a) shows the elastic depinning process
for the PP state at Fp=0.25, which moves directly into the
MC phase after depinning. At Fp=1.125 in Fig. 16(b), (V,)
increases linearly with F, through the SB phase. The slope
of (V) increases in the R phase, and the velocity-force rela-
tionship becomes linear in the ML phase. For Fp=2.125, Fig.
16(c) indicates that the depinning occurs in two steps. The
first depinning transition of the interstitial vortices only takes
the system from the P phase into the MI phase, while at the
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FIG. 17. The dynamic phase diagram of Fp vs Fp for B/B
=2.0, Rp=0.35\, and np=0.3125/\>. The three pinned phases are:
PP, the partially pinned phase shown in Fig. 14(a); P, the pinned
ordered dimer phase in Fig. 1(c); and PHB, the pinned herringbone
phase illustrated in Fig. 14(b). The dashed line separates the MC
phase shown in Fig. 15(a) from the ML phase of Fig. 3(e). The SB
phase illustrated in Fig. 3(a) occurs at intermediate values of Fp,
while the MI phase shown in Fig. 15(b) forms at higher values of
Fp. The R phase is illustrated in Fig. 3(c).

second depinning transition, the pinned vortices depin and
the sample enters the ML phase. Unlike the behavior at Fp
=1.125 in Fig. 16(b), at Fp=2.125 the intermediate R phase
is lost and is replaced by a sharp jump into the ML phase.

By conducting a series of simulations we construct the
dynamical phase diagram as a function of Fp and Fp, as
shown in Fig. 17. At high Fp, the MC phase forms for Fp
<0.45, while for Fp=0.45 the ML phase appears instead.
The SB phase exists for 0.55<Fp<<1.75, and the SB-R
boundary shifts to higher F, with increasing Fp until it ter-
minates at Fp=1.75. For Fp=1.75, the PHB state occurs at
low drive and the system depins into the MI phase. The MI
phase also extends as far down as Fp=1.5, where the system
passes from the SB phase into a narrow window of the R
phase with increasing Fj, before the vortices organize into
the MI phase. As F'p, continues to increase, the vortices at the
pinning sites depin and the system passes through a second
narrow window of the R phase until the vortices organize
into the ML phase. At high Fp, the R phase becomes vanish-
ingly small and the system passes directly from the MI to the
ML phase. The transition into the ML state increases linearly
with increasing Fp, while the depinning force saturates with
increasing Fp.

F. Changing Rp and B,

We next examine the effects of changing the pinning ra-
dius in a system with fixed Fp=0.85 and B/B,=2.0. In Fig.
18 we show the dynamic phase diagram for F, versus Rp
obtained from a series of simulations. For 0.2\ <Rp
=0.55\, we find the same three moving phases: SB, R, and
ML, as shown in Fig. 2. For Rp>0.55\, the pins are large
enough to permit double-vortex occupancy at the individual
pinning sites; in this case, a new set of phases appears which
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FIG. 18. The dynamic phase diagram of Fp vs Rp for B/By
=2.0 and Fp=0.85. PP: partially pinned phase; P: pinned dimer
phase; MI2: moving interstitial phase 2; SB: symmetry broken
phase; R: random phase; MC: moving crystal phase; and ML: mov-
ing locked phase. For Rp>0.2\ we observe the same phases illus-
trated in Fig. 17 at Fp=0.85. The curves do not extend above Rp
=0.55\ since for Rp>0.55\, multiple vortex pinning at individual
pinning sites occurs. For Rp<0.2A, a partially pinned phase appears
and the initial depinning is into a new moving interstitial phase
termed MI2, illustrated in Fig. 19(a). The upper dashed line sepa-
rates the MC phase from the ML phase.

we do not consider in this work. For Rp>0.2\, the R-ML
transition decreases in F', with increasing Rp since the larger
pinning sites make it easier for the vortices to localize along
the pinning rows and flow in the one-dimensional motion of
the ML phase. For Rp<<0.2\ at low F, we find the PP state
illustrated in Fig. 14(a). The onset of the PP phase coincides
with a drop in F,. at Rp=0.2\. Unlike the PP phase that
occurs at low Fp in Fig. 17, which depins elastically, the PP
phase at small Rp depins into a moving interstitial phase that
is distinct from the moving interstitial phase shown in Fig.
15(b). In Fig. 19(a) we illustrate the vortex trajectories in the
phase which we term the moving interstitial phase 2 (MI2).

0.8
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<V >
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FIG. 20. The dynamic phase diagram F, versus pinning density
n,, which determines B, at B/ B 4=2.0, Fp=0.85, and Rp=0.35\. P:
pinned dimer phase; MI: moving interstitial phase; SB: symmetry
broken phase; R: random phase; and ML: moving locked phase.
The transition to the ML phase shifts to higher F, with decreasing
np. The SB phase appears only for intermediate values of np.

The vortices flow in winding interstitial channels; however,
unlike the MI phase, in the MI2 phase only half of the pin-
ning sites are occupied. In Fig. 19(b) we plot (V,) vs F, for
a system with Rp=0.15\. A clear two-step depinning transi-
tion occurs, with (V) increasing linearly with increasing Fj,
in the MI2. At high Fj, and Rp<0.2A\, the pinning sites are
too small for the ML phase to occur, and instead the vortices
flow in the MC phase as illustrated in Fig. 15(a).

We next consider samples with fixed B/ B(/,:Z.O, Rp
=0.35\, and Fp=0.85, but vary the value of B, by changing
the pinning density np. This alters the average spacing be-
tween neighboring vortices. Up to this point we have used
np=0.3125/N\2. In Fig. 20 we illustrate the dynamic phase
diagram for F, versus np. As np increases, F,. increases since
the depinning of the interstitial vortices is determined by the
potential created by the vortices located at the pinning sites,
and as the vortex density increases, the depth of the intersti-

(b)

FIG. 19. (Color online) (a) Vortex positions (filled circles), pinning site locations (open circles), and vortex trajectories (black lines) for
the system in Fig. 18 showing the moving interstitial 2 phase (MI2) at Rp=0.15\ and Fp=0.2. (b) (V,) vs Fp for the same system. A sharp

transition from the MI2 phase to the R phase occurs.
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FIG. 21. The dynamic phase diagram of F}, vs thermal force F”
for a system with B/B;=2.0, Fp=0.85, np=0.3125/\2, and Rp
=0.35\. P: pinned dimer phase; SB: symmetry broken phase; R:
random phase; and ML: moving locked phase. Inset: (V,) vs Fp, at
FT=1.25 where a smooth depinning transition occurs.

tial pinning potential also increases. The R-ML transition
shifts to higher Fj, with decreasing np. Since the distance
between the pinning sites increases with decreasing np, the
moving vortices spend less time in the pinning sites. This
destabilizes the ML phase and the vortices must move at
higher velocities for the effective trough potential to be able
to stabilize the ML phase. For np=0.78/\?, the SB phase is
lost since at this pinning density the interactions between the
interstitial vortices and the pinned vortices become suffi-
ciently strong that the depinning of the interstitial vortices
also causes the pinned vortices to depin. As a result, the
system passes directly from the P phase to the R phase with
increasing Fj,. For np<<0.14/\%, the vortex-vortex interac-
tion becomes weak enough that the system depins into the
MI phase as illustrated in Fig. 15(b). This also coincides with
an increase in the value of Fj, at which the R phase appears
since the moving interstitial vortices in the MI phase do not
approach the pinned vortices as closely as they do in the SB
phase.

G. Effect of finite temperature

We next consider the effect of finite temperature on the
system in Fig. 2 with B/B;=2.0, Fp=0.85, Rp=0.35\, and
np=0.3125/)\2. In Ref. 51, we showed that a transition can
occur at finite temperature in which the vortex n-mer states
lose their orientational ordering and begin to rotate while
remaining confined within the large interstitial sites. This
state was termed a vortex plastic crystal. In Ref. 59 we dem-
onstrated that the SB phase disappears in the vortex plastic
crystal state. In Fig. 21 we plot the dynamical phase diagram
of Fj, vs FT for the same system in Fig. 2. In our units, the
dimers melt at FT=1.0. Above the melting temperature, there
is appreciable creep of the interstitial vortices as they hop
from one large interstitial site to another, as illustrated in Fig.
22(a) for Fp=0.1 and F'=1.25. As F), is further increased
the system enters the random (R) phase, as shown in Fig.
22(b) for Fp=0.25. At higher drives, the vortices begin to
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FIG. 22. (Color online) Vortex positions (filled circles), pinning
site locations (open circles), and vortex trajectories (black lines) for
the system in Fig. 21 at FT=1.25. (a) At F;,=0.1, there is appre-
ciable creep of the interstitial vortices and the dimers have lost their
orientational ordering and are rotating within the large interstitial
sites. (b) At F,=0.2, the vortex flow is disordered and vortices are
continually depinning and repinning. (c) At Fp=1.0, all of the vor-
tices are moving but there is still diffusion in the direction trans-
verse to the drive. (d) At F,=1.6 the vortices are about to enter the
ML state where the motion is confined to one-dimensional
channels.

localize along the pinning rows in one-dimensional channels;
however, there is still appreciable hopping from one row to
another as shown in Fig. 22(c) for Fp=1.0. At even higher
drives, the ML is recovered as illustrated in Fig. 22(d) for
Fp=1.6. For FT>1.35, the ML phase is lost and the high Fj,
flow is in the R phase, as shown in Fig. 22(c). In the inset to
Fig. 22 we demonstrate that at F7=1.25 the sharp features in
the velocity force curve seen at F7=0 in Fig. 2 disappear.

IV. DYNAMICS FOR DRIVING IN THE TRANSVERSE
DIRECTION

We now consider the case where Fp, is applied along the y
direction, F,=Fy¥, for the same system as in Fig. 1(d) with
Fp=0.85, Rp=0.35\, and np=0.3125/\2. A different set of
dynamic phases appears which are distinct from those found
for driving in the x direction. In particular, the SB phase is
lost and the dimers align in the y direction with the initial
depinning occurring in one-dimensional interstitial flow
paths. In Fig. 23 we plot the velocity force curves for
B/B4=2.0, 2.15, and 2.32.

Figure 23(a) shows the three phases: pinned (P), one-
dimensional moving interstitial (IDMI), and moving locked
(ML) that occur at B/B;=2.0. In the P phase, if the ground
state contains dimers which are aligned at either +30° or
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FIG. 23. The velocity force curves (V,) vs F, for Fp=Fpy for
the system in Fig. 2 with Fp=0.85, Rp=0.35\, and np=0.3125/\2.
P: pinned dimer phase; R: random phase; 1DMI: one-dimensional
moving interstitial phase, illustrated in Fig. 24(a); and ML: moving
locked phase, illustrated in Fig. 24(b). (a) B/By4=2.0. (b) B/By
=2.15, where an additional random flow phase occurs at depinning
due to the presence of trimers. (c) B/B4=2.32, where there is no
longer a 1DMI phase.

—30° to the x axis, a polarization effect is induced by the
applied drive similar to the effect discussed earlier. In this
case, however, the dimers shift such that they are aligned in
the y direction. The 1DMI state which appears above depin-
ning is illustrated in Fig. 24(a) at F;,=0.2, where the inter-
stitial vortices move between the vortices in the pinning
sites. Near F,=0.55 there is a sharp depinning transition for
the vortices in the pinning sites. After this depinning transi-
tion occurs, the vortices very rapidly rearrange into a ML
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FIG. 24. (Color online) Vortex positions (filled circles), pinning
site positions (open circles), and vortex trajectories (black lines) for
the system in Fig. 23(a) at B/B4=2.0. (a) One-dimensional moving
interstitial (IDMI) phase at Fp=0.2. (b) The ML phase for Fp
=Fpy at Fp=0.8.
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phase where the vortices move along the pinning sites, as
shown in Fig. 24(b) for F;,=0.8. In the ML phases for driv-
ing along the x and y directions, the vortices travel in one-
dimensional channels along a row or a column of pinning
sites, respectively. The pinning rows followed by the vortices
for x-direction driving are evenly spaced in the y direction so
the vortices flow through the centers of the pinning sites. In
contrast, the pinning columns followed by the vortices for
y-direction driving are unevenly spaced in the x direction due
to the symmetry of the honeycomb lattice. As a result, for the
y-direction driving the vortices do not flow through the cen-
ters of the pinning sites but are instead shifted to the right
and left of the pinning sites in alternate columns, as shown in
Fig. 24(b). This produces a more even spacing between the
columns of moving vortices. Since different columns contain
different numbers of vortices, the ML phase for y-direction
driving has smectic-type characteristics. The velocity-force
curves for 1.5<B/B;<?2.0 have the same general form as
the curve in Fig. 23(a) and show the same three phases.

For B/By4>2.0 the appearance of trimer states disrupts
the 1DMI flow since the trimers cannot align completely in
the y direction. This produces R vortex flow at depinning, as
shown in Fig. 23(b), with diffusive vortex motion occurring
along the x direction. There are more pronounced fluctua-
tions in (V,) in the R phase, and the velocity-force curve is
nonlinear and lower than the extrapolated linear behavior in
the 1DMI phase that begins near F=0.23. The trimers can
block the one-dimensional channels of flow, as shown in Fig.
24(a), lowering the number of mobile vortices. At higher
drives, the trimers depin, straighten into a linear configura-
tion, and flow in the 1DMI phase. At F,= 0.5, the vortices in
the pinning sites depin, resulting in a transition from the
IDMI phase to the R phase. For sufficiently high drives, the
ML phase forms. For driving along the x axis at B/B
>2.0, we showed in Fig. 11(c) that the ML phase is lost due
to a buckling transition of the one-dimensional chains of
vortex motions and that a PML phase forms instead when a
portion of the vortices move through the interstitial regions.
For driving along the y axis at B/B;>2.0, the ML state
remains stable for much higher values of B/B,, than for the
x-axis case. A comparison of Figs. 3(e) and 24(b) shows that
the interstitial region crossed by the vortices in the moving
channels is not as wide for y-axis driving as for the x-axis
driving, resulting in more stable y-axis ML flow. As B/B, is
further increased, the random regime grows until the 1DMI
phase is completely lost, as shown in Fig. 23(c) for B/B,
=2.35. In Fig. 25 we plot the dynamical phase diagram for
Fp versus B/Bg,, highlighting the onset of the different
phases. The transition to the ML phase shifts to higher values
of Fp, with increasing B/B since the ML vortex channels
become increasingly anisotropic as the number of vortices in
the sample increases.

A. Dynamics as a function of Fp and dimer jamming

We now consider the vortex dynamics in a system with
fixed B/B4=2.0, Rp=0.35\, and np=0.3125/\? for varying
Fp with F,=F)y. As noted above, for Fp<<0.5 a PP vortex
lattice forms. In Fig. 26(a), the velocity-force curve for Fp

224511-14



MOVING VORTEX PHASES, DYNAMICAL SYMMETRY ...

08k ML i

0.4¢- 1DMI N

FIG. 25. The dynamical phase diagram for Fj, vs B/By for
Fp=Fpy in a sample with Fp=0.85, Rp=0.35\, and np
=0.3125/\2. P: pinned phase; 1DMI: one-dimensional moving in-
terstitial phase; R: random phase; and ML: moving locked phase.
For B/B4>2.3 the IDMI flow is lost.

=0.35 shows that the depinning of the PP phase is elastic and
occurs in a single-step transition to a MC phase, as shown
earlier in Fig. 16(a) for driving along the x axis. In the MC
phase, half of the vortices move along the pinning sites. For
0.5<Fp<1.75 at low drive the system is in the P phase of
orientationally ordered dimers, and as the drive increases,
Fig. 26(b) shows that the same 1DM1 and ML phases, illus-
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FIG. 26. (V) vs Fp, for Fj,=Fpy for B/B4=2.0, Rp=0.35\, and
np=0.3125/\2. (a) At Fp=0.35, there is a single-step elastic depin-
ning transition from the PP phase to the MC phase. (b) At Fp
=1.25 we find the P, IDMI, and ML phases. (c) At Fp=2.25, there
are sharp transitions between the PHB, 1DMI, and ML phases.
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FIG. 27. The dynamic phase diagram Fp, vs Fp for Fp=Fpy at
B/B4=2.0, Rp=0.35\, and np=0.3125/N\2. PP: partially pinned
phase; P: pinned dimer phase; PHB: pinned herringbone phase;
1DMI: one-dimensional moving interstitial phase; MC: moving
crystal phase; and ML: moving locked phase. A peak in the depin-
ning threshold F,. occurs near Fp=0.5 at the PP-P transition. At the
P-PHB transition, F, increases by a factor of 3. The dashed line
separates the MC phase from the ML phase.

trated in Fig. 23(a), appear. The rapid rearrangement of the
vortices from the 1DMI phase to the ML phase results in a
small jump near F=0.8 which marks the IDMI-ML transi-
tion. For strong pinning Fp=1.75, Fig. 26(c) indicates that
the ground state forms the PHB phase illustrated in Fig.
14(b). The same pinned state appears for x-direction driving
at strong pinning, as shown in Fig. 16(c). In Fig. 26(c), the
velocity-force curve at Fp=2.25 shows the abrupt nature of
the depinning transition from the PHB phase to the 1DMI
phase, which differs from the smoother depinning transition
that occurs from the P phase to the 1DMI phase in Fig. 26(b).
The depinning threshold increases markedly with increasing
Fp once the system enters the PHB state. In Fig. 27 we plot
the dynamic phase diagram for F,; versus Fp. Near the tran-
sition from the PP to the P phase, there is a peak in F,. similar
to the peak observed at the PP-P transition for driving in the
x direction, as shown in Fig. 13. For Fp>0.175 the strong
enhancement of the depinning threshold in the PHB state can
be seen clearly.

In Fig. 28(a) we illustrate the vortex positions just before
depinning for Fp=2.25. Even though the drive is applied in
the y direction, the dimers have aligned with the x direction.
When the dimers are oriented along the x axis, they cannot fit
through the easy-flow one-dimensional channel between the
pinning sites but instead are essentially jammed (J) by the
two pinned vortices at the top edge of the large interstitial
site. In the ordered dimer P phase, the dimers all reorient in
the same direction under an applied drive. In contrast, in the
PHB phase, the dimers rotate in opposite directions under an
applied drive, so when the drive is applied along the y direc-
tion the dimers end up aligning in the x direction. In Fig.
28(b) only the vortex positions from Fig. 28(a) are shown to
indicate more clearly the shift of the dimers in the positive y
direction. This vortex configuration, which we term the J
state, has a structure that is distinct from that of the pinned
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FIG. 28. (Color online) Vortex positions (filled circles) and pin-
ning site locations (open circles) for the system in Fig. 26(c) at
B/B4=2.0 and Fp=0.56 just before depinning. Under the influence
of the driving force which is applied in the y direction, the dimers
align with the x direction and shift to the top of the large interstitial
sites. Because the dimers are not aligned with the direction of the
drive, a jamming phenomenon occurs which is responsible for the
large increase in F, seen in Fig. 27 at Fp=1.75. We call this the J
state. In (b) only the vortex positions are shown and it can more
clearly be seen that the dimers are shifted in the positive y direction.
The vortex configuration in the jammed state is distinct from the
pinned herringbone state.

herringbone phase shown in Fig. 14(b). The jammed state
configuration exists only in the presence of the applied drive.
For F=0 the dimers return to the PHB state. In the J state,
the critical current is up to three times larger than in the state
where the dimers are aligned in the y direction. We also note
that at incommensurate fields for Fp>1.75, the net vortex
flow is reduced since some of the dimers align in the x di-
rection and effectively block the motion of other vortices
along the y direction.

In order to better characterize the enhancement of F,. in
the jammed state, in Fig. 29 we plot the critical depinning
force in the y direction, F?, and in the x direction, F?, versus
Fp. In the inset of Fig. 29 we show the ratio ./ F. versus Fp.
In the PP phase, F?=F, while in the P aligned dimer phase,
F? is slightly higher than F? since the vortices can depin
more readily into the 1DMI phase in the y direction. In the
jammed state that forms from the PHB phase, F? is 3.1 times
higher than F, for the same value of Fp.

B. Effects of changing Rp and B,

In Fig. 30 we plot the dynamical phase diagram Fj, versus
Rp for driving in the y direction with B/B=2.0, Fp=0.85,
and np=0.3125/\2. For Rp=0.2\, the system depins into the
1DMI phase and makes a transition to the ML phase at
higher drives. For Rp<<0.2\, the system forms the PP phase
where only half of the pinning sites are occupied. The PP
phase depins into a moving interstitial phase (MI2Y) that
resembles the MI2 state observed for driving in the x direc-
tion in Fig. 19(b), where half the vortices depin while the
other half remain pinned. The MI2Y phase is oriented 90°
from the MI2 phase. At F,=0.4 for Rp<<0.2\, the vortices at
the pinning sites begin to depin and repin giving a regime of
the R phase until F, becomes large enough for all the vorti-
ces to depin into the ML phase. For 0.2\ =Rp=0.3\, the J
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FIG. 29. The critical depinning force in the x direction, F7. (open
squares), and in the y direction, F> (filled circles), vs Fp for B/ By
=2.0, Rp=0.35\, and np=0.3125/\2. PP: partially pinned phase; P:
pinned dimer phase; PHB: pinned herringbone phase; and J:
jammed state. In the PP phase, Fi=F), while in the P phase, F
>F). A large enhancement of F occurs in the PHB phase when
dimer jamming occurs. Inset: the ratio F2./ F. vs Fp. The dashed line
indicates F?/F.=1, where the depinning thresholds are equal.

state discussed in Fig. 28 occurs due to the formation of
dimers aligned in the x direction, which is associated with a
marked increase in F.. As discussed earlier, the PHB phase
and J state occur when Fp becomes high enough that the
vortices in the pinning sites cannot shift to allow for dimer
ordering to occur. Similarly, as Rp is reduced, the vortices in
the pinning sites have less room to adjust for dimer ordering
so the PHB state forms. The jamming also produces the
counterintuitive effect that as Rp increases above Rp=0.35\,
the depinning threshold decreases.
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FIG. 30. The dynamic phase diagram for Fp vs Rp with Fp
=Fpy, B/By=2.0, Fp=0.85, and np=0.3125/N\2. PP: partially
pinned phase; J: jammed state; P: pinned phase; MI2Y: y-direction
moving interstitial phase 2; 1DMI: one-dimensional moving inter-
stitial phase; R: random phase; and ML: moving locked phase. For
Rp<<0.2\ the system forms the PP phase. This depins into the
MI2Y state for driving in the y-direction, which is similar to the
MI2 state shown in Fig. 19(a) for driving in the x direction. For
0.2N <Rp<<0.3\, the system forms the J state shown in Fig. 28.
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FIG. 31. The dynamical phase diagram for Fp vs np, which
determines By, for driving in the y direction with B/B4=2.0, Rp
=0.85\, and Fp=0.85. P: pinned ordered dimer phase; 1DMI: one-
dimensional moving interstitial phase; and ML: moving locked
phase.

In Fig. 31 we show the dynamical phase diagram for Fp,
versus np, which determines the value of B, for B/B4=2.0,
Rp=0.35\, and Fp=0.85. As np increases, the critical depin-
ning force into the 1DMI phase increases since the repulsion
from the pinned vortices experienced by the interstitial vor-
tices increases as the average vortex-vortex spacing de-
creases. The transition from the 1DMI phase to the ML phase
shifts to higher values of F, as np decreases since the dis-
tance between the pinning sites which stabilize the ML flow
increases.

V. DISCUSSION

Our results are for honeycomb pinning arrays where it
was shown in previous work that n-merization of the inter-
stitial vortices into vortex molecular crystal states occurs for
B/B4>1.5. Many of the dynamical effects presented in this
work are due to the n-merization effect. In kagomé pinning
arrays, similar types of vortex molecular crystal states ap-
pear, so we expect that many of the same types of dynamic
phases described here will also occur for kagomé pinning
arrays although we do expect that there will be certain dif-
ferences as well. In the kagomé pinning array, the vortex
dimer state appears at B/B4=1.5 and has a herringbone or-
dering even for large weak pins. There are no easy flow
channels along *£30° to the x axis, so the symmetry breaking
flows should be absent. Additionally, since there is no easy
flow channel in the y direction, the anisotropic depinning
dynamics may be different as well.

We have only considered B/B;<<2.5 in this work. At
higher fields, a wide array of vortex molecular crystal states
occur that should also have interesting dynamical phases.
Since the low matching fields are more robust, observing the
dynamics near these low fields experimentally is more fea-
sible. Although our results are specifically for pinning sites
with single vortex occupation, similar dynamics should oc-
cur if the first few matching fields have multiple vortices at
the pinning sites. In this case, the effective dimerization of
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the interstitial vortices would be shifted to higher magnetic
fields.

Although true phase transitions are associated only with
equilibrium phenomena, the nonequilibrium phases consid-
ered here have many analogies to equilibrium phases. For
example, several of the transitions between the nonequilib-
rium phases have a continuous-type behavior, while in other
cases the transitions are sharp, indicative of a first-order na-
ture. Future studies could explore the possible emergence of
a growing correlation length near the transitions to see
whether they exhibit the true power-law behavior associated
with continuous phase transitions or whether they show
crossover behavior. For transitions that exhibit first-order
characteristics, it would be interesting to prepare a small
patch of pinning sites with different characteristics that could
act as a nucleation site for one of the phases in order to
understand whether there is a length scale analogous to a
critical nucleus size.

We also note that the dynamics we observe should be
general to systems with similar geometries and repulsively
interacting particles. For example, in colloidal systems,
square pinning arrays with flat regions between the pinning
sites (muffin-tin potentials) have been fabricated, and in
these systems the interstitial colloids are much more mobile
than in washboard-type pinning potentials. Honeycomb pin-
ning arrays could be created using similar techniques for this
type of system.

VI. SUMMARY

We have shown that vortices in honeycomb pinning ar-
rays exhibit a rich variety of dynamical phases that are dis-
tinct from those found in triangular and square pinning ar-
rays. The honeycomb pinning arrays allow for the
appearance of n-mer-type states that have orientational de-
grees of freedom. We specifically focused on the case where
dimer states appear. At B/B,=2.0, the dimers can have a
ferromagnetic type of ordering which is threefold degenerate.
At depinning, the dimers can flow in the direction in which
they are aligned. For the case of driving along the x axis, the
dimers flow at £30° to the applied drive giving a transverse
velocity response. At incommensurate fields where dimers
are present, even though the orientational order is lost, the
moving states can dynamically order into a broken symmetry
state where the vortices flow with equal probability at either
+30° or —30° to the x axis. As the driving in the x direction
increases, there is a depinning transition for the vortices in
the pinning sites, and the transverse response is lost when the
vortices either flow in a random phase or channel along the
pinning sites. As a function of pinning force, we find other
types of vortex lattice ordering at zero driving, including a
partially pinned lattice and a herringbone ordering of the
dimers. These other orderings lead to new types of dynami-
cal phases, including an elastic depinning for weak pinning
where all the vortices depin simultaneously into a moving
crystal phase and an ordered interstitial flow in which the
moving dimers break apart. The transitions between these
flow phases appear as clear steps in the velocity force curves,
and we have mapped the dynamical phase diagrams for vari-
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ous system parameters. We also showed that the different
phases have distinct fluctuations and noise characteristics.
When the temperature is high enough, the dimer states lose
their orientational ordering and begin to rotate within the
interstitial sites. This destroys the symmetry-breaking flow;
however, the moving locked phase can still occur at high
drives.

The transition in the vortex ground-state ordering as a
function of pinning force causes the critical depinning force
for driving in the x and y directions to differ. When driving
along the y direction, the initial depinning occurs in the form
of one-dimensional interstitial channels, and at high drives
the vortices can form an anisotropic moving locked phase.
We find a large enhancement of the depinning force in the y
direction associated with the pinned herringbone phase when
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the dimers align in the x direction and create a jamming
effect. The jammed state can enhance the critical depinning
force by a factor of 3 and can also arise for decreasing pin-
ning size. We expect that many of the general features we
observe will carry over to the higher matching fields in the
honeycomb pinning arrays and in kagomé arrays since or-
dered n-mer states occur for the kagomé lattice as well.
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